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Elevated uric acid correlates
with wound severity
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ABSTRACT
Chronic venous leg ulcers are a major health issue and represent an often overlooked area of biomedical research.
Nevertheless, it is becoming increasingly evident that new approaches to enhance healing outcomes may arise
through better understanding the processes involved in the formation of chronic wounds. We have for the first
time shown that the terminal purine catabolite uric acid (UA) is elevated in wound fluid (WF) from chronic venous
leg ulcers with relative concentrations correlating with wound chronicity. We have also shown a corresponding
depletion in UA precursors, including adenosine, with increased wound severity. Further, we have shown that
xanthine oxidase, the only enzyme in humans that catalyses the production of UA in conjunction with a burst of
free radicals, is active in chronic WF. Taken together, this provides compelling evidence that xanthine oxidase may
play a critical role in the formation of chronic wounds by prolonging the inflammatory process.
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INTRODUCTION
Chronic leg ulcers affect 1–3% of the elderly
resulting in long-term pain, immobility and
decreased quality of life for a large pro-
portion of sufferers (1–3). Venous stasis leg
ulcers are the most frequently encountered
chronic wounds in the clinical setting (4). The
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healing process in venous leg ulcers is typically
persistent with median durations ranging from
6 (5) to 64 months (6) and an average duration
of 12–13 months (7,8). Most patients suffer from
the condition for 15 or more years and 24% are
hospitalised as a direct result of their ulcers (7).

Key Points

• elevated levels of uric acid cor-
relates with wound chronicity

• XO may play an important
part in the formation and
progression of chronic wounds
by prolonging the inflammatory
process

• enhanced turnover of purine
precursors in clinically worse
ulcers shows XOR is a novel
potential therapeutic target

Compression therapy is the primary form of
treatment and prevention of venous leg ulcers.
This form of treatment is critical given that
these patients suffer with chronic venous insuf-
ficiency. However, this approach requires spe-
cialised expertise to apply effectively and many
patients find the bandaging extremely uncom-
fortable leading to non compliance, which
consequently prolongs healing time (9,10). In
addition, up to 15–30% of chronic venous leg
ulcers do not respond to compression and
remain unhealed, even after a year of treatment
(11). Currently, there is an unmet need for an
effective, low-cost therapeutic and diagnostic
test for chronic venous leg ulcers. Neverthe-
less, it is becoming increasingly evident that
new approaches to enhance healing outcomes
may arise through better understanding the
processes involved in the formation and pro-
gression of chronic wounds.
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Cell rupture as a consequence of mechanical
or chemical disturbance results in the release of
adenosine triphosphate (ATP) into the extracel-
lular environment (12). ATP breaks down in a
stepwise fashion to adenosine monophosphate,
inosine monophosphate, adenosine, inosine
and hypoxanthine, resulting in the accumu-
lation of these metabolites in tissue (13). The
final reactions in this pathway are the conver-
sion by xanthine oxidase (XO) of hypoxanthine
to xanthine, and subsequently xanthine to
uric acid (UA), while simultaneously releas-
ing the toxic superoxide radical (Figure 1).
These metabolites have been extensively inves-
tigated in many disease states (14–17) with
elevated levels of hypoxanthine and xanthine
in cerebrospinal fluid and serum regarded as
reliable early indicators of inflammatory and
ischaemic tissue damage (15–17). However, no
comprehensive profiling of these small hetero-
cyclic metabolites has been reported for chronic
wounds.

Xanthine oxidoreductase (XOR) is the only
physiological enzyme in humans capable of
catalysing the production of UA (18). A com-
plex molybdo-flavoenzyme, XOR is a homod-
imer with a molecular weight of approxi-
mately 150 kDa (19). XOR exists in two inter-
convertible forms, a dehydrogenase (XDH)
which is predominant in normal tissues, and a
proteolytically generated oxidase form (XO)
that is present during tissue injury (18,20).
Unlike XDH, XO is unable to bind NAD+

and instead, consumes molecular oxygen as
its primary electron donor liberating the toxic
superoxide radical (18,20). Superoxide itself is
unstable, rapidly converting to form hydro-
gen peroxide (H2O2), either spontaneously or
enzymatically through superoxide dismutase.
H2O2 readily diffuses across membranes com-
bining with metal ions like iron, generating
the highly reactive hydroxyl radical (21–23).
Sustained formation of oxidants may disturb
the delicate redox balance within the wound
environment exacerbating tissue injury (24).

Recent studies in our laboratory have shown
an atypical accumulation of purine metabolites,
in particular UA, in wound fluid (WF) collected

from patients with chronic venous leg ulcers.
To further investigate this, we established a
sensitive and specific method for analysing
purine metabolites in WF. We provide evi-
dence that these purinogenic metabolites have
enhanced turnover in clinically worse ulcers
and that XO levels are increased with wound
severity. From these findings we propose that
XO may be a key contributor to persistent
inflammation and that therapeutic inhibition
of XO may restore wound healing.

MATERIALS AND METHODS
Patient recruitment and clinical data
collection
Patients with chronic venous leg ulcers were
recruited from three clinical sites in Brisbane,
QLD; the clinics at the Princess Alexandra Hos-
pital, the Royal Brisbane Hospital and Spiritus
(formerly St Luke’s Nursing Services). Ethi-
cal approval was obtained from the relevant
institutions prior to the commencement of
the study. The study was conducted accord-
ing to Declaration of Helsinki principles and
written informed consent was obtained from
all patients before enrolment. Patients with a
venous leg ulcer were diagnosed by the attend-
ing clinicians in charge of the wound clinics or
by the physician who referred the patients to
a community nursing service for care. Patients
were eligible to partake in the study if they had
an ankle-brachial pressure index ≥0·8 and <1·3
and excluded if they had ulcers of non venous
aetiology, and were immobilised (completely
bed or wheelchair bound) or exhibited clini-
cal signs of infection. It is acknowledged that
even in the absence of clinical signs of infection
there may be underlying bacterial bioburden;
however, only ulcers exhibiting clinical signs
of infection were excluded from the study.
Ulcer assessment data, including ulcer charac-
teristics, such as ulcer area, duration and the
type of external compression therapy applied
after treatment, were collected. A standard-
ised approach was used for wound measure-
ment which involved tracing the edge of the
ulcer onto a plastic sheet and determining the

Uric Acid (UA)Adenosine Inosine Hypoxanthine Xanthine
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Figure 1. Purine catabolic pathway. Depletion of ATP culminating with the production of uric acid (UA) and superoxide (O−
2 ).
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area by planimetry using VisitrakTM (Smith
and Nephew, Hull, UK). Wounds were also
assigned a pressure ulcer scale of healing
(PUSH) score to provide a more sensitive mea-
sure of healing, rather than examining area
alone (25).

WF collection technique
WF was collected using a standard established
collection technique which involves the aspi-
ration of fluid from underneath an occlusive
dressing (26). Briefly, the ulcers were washed
with sterile water followed by the application
of an occlusive dressing (Opsite, Smith and
Nephew, Hull, UK) over the wound. WF was
allowed to accumulate under the dressing and
was recovered by washing the wound with
approximately 1 ml of saline. WF was then cen-
trifuged at 14 000 g for 10 minutes and stored at
−80◦C until further analysis. Protein concentra-
tions of each WF sample were estimated using
the Coomassie Plus Bradford Protein assay
kit (Thermo Scientific, Rockford, IL). Samples
were measured at 595 nm in a Bio-Rad UV-
Visible Benchmarkplus microplate spectropho-
tometer (Bio-Rad, Hercules, CA) and protein
concentration determined against a bovine
serum albumin standard curve (0·1–1 mg/ml).

HPLC/MRM detection of purine
metabolites in WF
Relative concentrations of purine metabolites,
adenosine, inosine, hypoxanthine, xanthine
and UA in WF were quantified using a combi-
nation of high performance liquid chromatog-
raphy (HPLC) with tandem Mass Spectrometry
(MS) and multiple reaction monitoring (MRM).
Briefly, a Polaris C18 analytical column 5 μm,
250 × 4·6 mm i.d (Varian) was used to frac-
tionate purine metabolites in standard and
sample solutions. The mobile phase consisted
of 10 mM ammonium acetate pH 4·7 (buffer A);
and buffer B, containing a 1:1 mixture of buffer
A and methanol. Adenosine, inosine, hypox-
anthine, xanthine and UA standards (Sigma
Aldrich) and WF samples were injected and
analysed in triplicate using a fully automated
UltiMate 3000 nano, capillary and micro LC
system (Dionex). The purine metabolites were
eluted using a linear gradient from 0 to 100%
buffer B over 5 minutes at a flow rate of
0·5 ml/min. MRM was performed using a 4000
QTRAP LC/MS/MS system (Applied Biosys-
tems), a triple quadrupole/linear ion trap mass

spectrometer, commonly used for metabolite
identification (27). Analyses were performed
using an ionspray voltage of 4·5 kV, the turbo
spray temperature of 45◦C and nitrogen was
used as the collision gas.

Detection of xanthine oxidase activity
in WF
XO enzyme activity was determined by con-
centrating pooled WF by ultracentrifugation
using nanosep 3 K omega filters (PALL, Pen-
sacola, FL) at 10 000 g for 10 minutes at 4◦C.
The retentate was resuspended with 10 mM
Tris–HCl buffer, pH 8·0, containing either
10 μmol/l of xanthine or allopurinol, a spe-
cific inhibitor of XO, then incubated at 37◦C
for 2·5 hours in the ultrafiltration unit. Reac-
tion mixtures were reprocessed on nanosep
3 K omega filters and the resulting filtrates
were analysed using RP-HPLC. Briefly, the
filtrates were analysed on a Polaris® C18 ana-
lytical column 5 μm, 250 × 4·6 mm i.d. (Varian,
Palo Alto, CA) using the BioLogic Duoflo chro-
matography system (Bio-Rad, Hercules, CA)
with UV detection at 254 and 280 nm. The
mobile phase was 40 mmol/l KH2PO4 (potas-
sium phosphate) buffer, pH 2·2 containing 2%
methanol. The compounds were eluted using
an isocratic flow rate maintained at 0·5 ml/min.
The column was regenerated between runs
using 80% acetonitrile/40 mmol/l potassium
phosphate, pH 2·2 buffer.

Western blot analysis of xanthine
oxidase in WF
The presence of XO in WF from ulcers with
varying wound severity was determined by
Western blotting using a commercially avail-
able anti-XOR polyclonal antibody (Santa Cruz
Biotechnology, Santa Cruz, CA). This method
carries high specificity that is necessary for
the accurate detection of XO. In brief, WF
samples containing 10 μg of total protein
were subjected to reducing sodium dode-
cyl sulfate-polyacrylamide gel electrophoresis
(SDS-PAGE) (NuPAGE 4–12% gradient gels,
Invitrogen Carlsbad, CA) before being trans-
ferred to nitrocellulose membranes (PALL).
The membranes were blocked at room temper-
ature in 5% BSA (Calbiochem, San Diego, CA)
in Tris-buffered saline containing 0·1% Tween-
20 (TBST) for approximately 10 minutes. Subse-
quently, the membranes were incubated with
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primary antibody (1:100) for 1 hour at room
temperature and washed in 0·5% BSA in TBST
before incubation with a secondary antibody
(1:10 000, R&D Systems) for 30 min. After fur-
ther washes the membranes were exposed
to enhanced chemiluminesence (GE Health-
care, Buckinghamshire, UK) for 5 minutes. The
signal was detected by exposing membranes
to X-ray film (FujiFilm Corporation, Tokyo,
Japan) and then developed in an automated
film developer (AGFA CP 1000, Mortsel, Bel-
gium) to visualise the protein bands.

Statistical analysis
First, the median PUSH score (range 3–16)
for the 70 WF samples analysed was calcu-
lated to be 10. WF samples were then split
into two groups: PUSH scores 10–16 (n = 17)
representing WF from the clinically severe
ulcers, and 3–9 (n = 12) representing WF from
the less severe ulcers. Statistical analysis was
performed on data obtained from HPLC/
MRM purine profiling of WF samples from 29
patients using GraphPad Prism (Version 5). In
cases where multiple WF samples were col-
lected from a patient, the first WF sample
collected was selected as the representative
sample for statistical analysis. Statistical signif-
icance between these two groups was deter-
mined by the Mann–Whitney non parametric
test.

RESULTS
Patient demographics
A subset of 29 patients, comprised of 18 males
and 11 females with a mean age of 67·3 years
(SD 12·6) were randomly selected. On admis-
sion into the study, the median ulcer duration
was 26 weeks (range 1–520) while the median
ulcer area was 4·9 cm2 (range 1–73 cm2). Of
the 29 patients, 14 patients achieved complete
wound closure within 24 weeks of the study.
WF samples were collected from patients at

various time points during the course of treat-
ment depending on patient attendance, wound
infection and more importantly, availability
of sample. Overall, 70 WF samples were col-
lected which included multiple samples from
some patients and were used for the MRM
purine profiling analysis. Limited sample vol-
ume (<1 ml) and protein concentration of WF
made it particularly challenging to use the same
cohort of samples for subsequent analysis.

Separation of purine catabolites using
HPLC/MRM
Elevated levels of purine metabolites in bioflu-
ids are reliable indicators of inflammation and
tissue damage (15–17). Therefore, monitor-
ing changes of these purinogenic compounds
in WF could provide valuable information
regarding the healing status of these wounds.
In view of this, a sensitive and specific pro-
cedure which involved combining HPLC with
tandem MS and MRM was developed to pro-
file purines in WF. Initially, the precursor
and product ions for each compound were
determined by directly injecting each purine
standard into the QTRAP mass spectrome-
ter (Table 1). Purine catabolites were resolved
with a linear RP-HPLC gradient and subse-
quently monitored by tandem MS with nega-
tive electrospray ionisation (ESI-MS/MS). The
HPLC–MRM run allowed for suitable separa-
tion of UA, hypoxanthine, xanthine, inosine
and adenosine with approximate retention
times of 10·4, 10·6, 10·9, 11·1 and 12·2 min-
utes, respectively. This separation allowed for
enhanced selectivity for each purine compound
in the MRM mode.

Calibration curves were determined between
the ranges of 0·25 and 10 μM and were based
on peak area counts. The calibration curves
showed a linear response over the concentra-
tion range tested with correlation coefficients
between (0·9978–0·9996) for all metabolites.
The detection limit was classified as a signal

Table 1 Multiple reaction monitoring transitions for the detection of purine metabolites in wound fluid

Compound Mr Precursor ion m/z Product ion m/z Declustering potential Collision energy

Adenosine 267·2 266 134 30 23
Hypoxanthine 136·1 135 92 25 23
Inosine 268·2 267 135 30 23
Xanthine 152·1 151 108 25 23
Uric acid 168·1 167 124 23 23
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to noise ratio of 3. In addition, an assessment
of the analytical recovery was conducted by
preparing two biological samples. The first, a
reference sample, comprised of pooled WF and
the second was the same sample supplemented
with solutions of each purine standard at two
concentrations, 10 and 2·5 μM, prior to filtra-
tion. Recovery was subsequently determined
by subtracting the value of the reference sam-
ple from that in the spiked WF sample. The
extraction yields for the different purine com-
pounds were calculated to be in the range of
60–125% as shown in Table 2.

UA an important indicator of wound
severity
The validated HPLC/MRM method was subse-
quently applied to determine the concentration
of purine catabolites in 70 WF samples obtained
from 29 patients. Relative concentrations of
purine metabolites in WF were quantified
based on peak area counts of each metabolite
in relation to the respective standard curve. To
account for the dilution of purine metabolites
during sample collection, the concentration of

each catabolite was normalised to WF protein
concentration and expressed as micromoles per
milligram of total protein content. The PUSH
score for ulcer healing was also used to pro-
vide a clinical grading of wound severity (25).
The PUSH score is a clinically recognised eval-
uation of wound characteristics, such as size,
tissue type (i.e. epithelial, granulating, slough
or necrotic) and amount of exudate (25). The
final scores range from 1 to 17, with 17 repre-
senting the most severe wounds. Although the
PUSH score was initially developed to assess
pressure ulcers, it has been validated as a reli-
able assessment tool for other chronic wounds,
including venous leg ulcers (28).

First, the amount of UA as a percentage of
total purines in each WF sample was plot-
ted against PUSH scores. The results obtained
show that levels of UA increase as the severity
of the wound increases (Figure 2A). To fur-
ther confirm this trend, one WF sample was
selected for each patient and the relative con-
centrations of UA were assessed against the
two groupings of PUSH scores as indicated
in Figure 2B. Relative concentrations of UA in

Table 2 Recoveries of purine metabolites in wound fluid

10 μM purine standards 2·5 μM purine standards

Compound Mean recovery (μM) Recovery (%) Mean recovery (μM) Recovery (%)

Adenosine 6·7 67 1·5 60
Hypoxanthine 10·5 105 2·7 108
Inosine 12·5 125 3·1 124
Xanthine 8·6 86 2·2 88
Uric acid 8·7 87 2·1 84
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Figure 2. Elevated uric acid (UA) correlates with increased wound severity. (A) A scatter plot of the levels of UA expressed as a
percentage of total purine versus PUSH scores. (B) Levels were expressed as amount of UA as a percentage of total purines ± SEM.
The amount of UA was significantly increased (P < 0·001) in the clinically worse ulcers (10–16, n = 17) compared to the lower
PUSH score group (3–9, n = 12). Statistical significance was determined by the Mann–Whitney non parametric test.
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clinically worse ulcers (PUSH scores 10–16)
(n = 17) were significantly (P < 0·001) higher
than that observed in the less severe ulcers
(PUSH score 3–9) (n = 12).

Reduced levels of purine precursors
in clinically worse ulcers
Given that the levels of UA increased with
wound severity, the amount of purine pre-
cursors, including adenosine, inosine, hypox-
anthine and xanthine, in WF were assessed
against PUSH score (Figure 3A). The results
show that levels of purine precursors decreased
as the PUSH score increased. Similarly, the
levels of precursor purines were significantly
higher (P < 0·0001) in WF from less severe
ulcers (PUSH score 3–9) compared to the WF
from clinically worse ulcers (PUSH score 10–16)
(Figure 3B). That is, significantly higher lev-
els of purines that serve as substrates for the
enzyme XO in WF were observed in patients
assigned a lower PUSH score compared to
patients in the higher PUSH score group.

Evidence of xanthine oxidase activity
in WF
The accumulation of UA in WF suggests that
XO is active at the wound site; hence, we con-
ducted studies investigating levels of XO in
WF. However, limitations associated with sam-
ple volume and protein concentration of WF
made it necessary to pool patient samples for
analysis. WF collected from a separate cohort of

15 patients with chronic venous leg ulceration
was pooled and XO activity was then deter-
mined by supplementing pooled WF with the
purine substrate xanthine and the production
of UA was examined at 280 nm. The resulting
chromatogram, as shown in Figure 4A, showed
an additional peak at 16-minute elution time in
WF compared to human serum. This peak was
identified as UA based on having an equiva-
lent elution time to the commercially available
standard. This oxidation of xanthine to UA was
calculated to be approximately 58 nM of xan-
thine/minute/mg of protein. To further sup-
port this finding, XO activity was assayed using
a potent XO inhibitor, allopurinol. Allopurinol
is rapidly metabolised by XO to generate the
active metabolite, oxypurinol. As depicted in
Figure 4B, a peak consistent with the retention
time of oxypurinol at 23 minutes was detected
at 254 nm. These results show elevated levels
of active XO in WF from patients with chronic
venous leg ulcers relative to human serum.

XO levels in WF correlates with wound
severity
HPLC/MRM analysis of purine metabolites in
WF indirectly suggests that XO concentration
corresponds to wound severity. Therefore, to
investigate if wound severity correlates with
XO levels, WF collected from seven patients
with varying degrees of wound severity based
on PUSH score were probed for the presence
of XO by Western blotting. The immunoblot
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Figure 3. Reduced purine precursors correlates with increased wound severity. (A) A scatter plot of the levels of purine precursors
versus PUSH scores. (B) Levels were expressed as concentration of the precursor purines (sum totals of adenosine, inosine, xanthine
and hypoxanthine) (μM/mg of total protein) ± SEM. The amount of precursor purines was significantly higher (p < 0·0001) in
the lower PUSH score group (3–9, n = 12) compared to the clinically worse ulcers (10–16, n = 17). Statistical significance was
determined by the Mann–Whitney non parametric test.
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Figure 4. Evidence of xanthine oxidase in wound fluid. Overlaid traces demonstrating activity of xanthine oxidase (XO) in pooled
wound fluid compared to human serum by (A) the production of UA and by (B) the production of the metabolite oxypurinol during
inhibition with the XO inhibitor allopurinol.

Figure 5. Western blot analysis of xanthine oxidase (XO) in wound fluid. The presence of XO in seven wound fluid samples with
PUSH scores of 7, 8, 9, 9, 12, 15 and 15, respectively (Lanes 1–7) was determined using Western blotting. Homogenate of bovine
liver (5 μg) was used a positive control (Lane 8) and a blank was run in Lane 9 as a negative control. Bands were detected in each
sample at approximately 130 kDa.

showed distinct bands in seven WF samples at
an approximate molecular weight of 130 kDa
(Figure 5). This band is consistent with previ-
ous literature that has reported the detection of
a similar band in human tissue homogenates
during reducing SDS-PAGE analysis (29). The
intensity of this band appears to increase as the
relative PUSH scores increase (Figure 5). These

results therefore support the purine profiling
data indicating that XO levels are increased
with wound severity.

DISCUSSION
Disruptions to the healing process result in the
alteration of numerous biochemical factors in
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the wound environment that may be used to
distinguish healing from non healing wounds.
Consequently, there has been increased inter-
est in characterising the various constituents in
WF to detect factors that may correlate with
wound chronicity, as well as be used to mon-
itor response to treatment. Changes in small
molecule metabolite concentrations in biolog-
ical fluids provide valuable insights into the
disruptions of ‘normal’ biological processes.
These small molecules are downstream end
products of gene and protein activity; therefore
slight imbalances can create major fluctuations
in metabolite concentrations that may be reflec-
tive of a disease state.

In this study, we developed and validated
a reliable, simple and specific analytical assay
for separation and simultaneous monitoring of
low concentrations of purine metabolites in a
complex biological fluid, such as WF. The com-
bination of RP-HPLC with MS/MS enabled
specific analysis of these potential indicators
of healing by MRM. The only inconsistency
detected was that the extraction yields obtained
for adenosine were surprisingly lower than
expected (Table 2). This may reflect the greater
instability of adenosine in WF relative to other
purines (30,31). One possible explanation for
this anomaly is that adenosine is converted to
catabolites further down the purine degrada-
tion pathway. Interestingly, the inosine recov-
ery values obtained were >100% which may
support this hypothesis.

Purine profiling of WF from chronic wounds
showed for the first time the accumulation of
purine metabolites, in particular UA. These
results indicate that at least two important
changes occur in the chronic wound envi-
ronment; first, that the wound bed is poorly
oxygenated resulting in a switch to anaerobic
metabolism and consequent ATP breakdown
(13,18,32). Second, the presence of UA in WF
indicates that XO is active in the wound site,
catalysing the conversion of hypoxanthine to
xanthine and finally to UA. This was confirmed
by enzyme activity assays that showed ele-
vated levels of active XO in WF compared to
human serum (Figure 4). Importantly, our data
show significantly elevated levels of UA and
a corresponding decrease in purine precursors
in WF from clinically worse ulcers (Figures 2
and 3). Interestingly, previous reports indicate
that topical application of purine precursors
accelerates wound healing in various animal

and cell culture models (33–35). In particu-
lar, adenosine has been shown to play an
important role in stimulating wound healing
(36,37). Taken together, these findings indi-
rectly suggest that XO levels correlates to
wound severity.

Western blot was used to show a direct
relationship between XO and wound sever-
ity by detecting the presence of XO in WF
with varying PUSH scores. The results show a
trend whereby XO levels increase with wound
severity (Figure 5), suggesting that elevated
concentrations of XO at the wound site is
directly associated with delayed healing. It
should be noted that it is highly likely that
the XO enzyme may also be present in acute
wound fluid (AWF) with levels peaking dur-
ing the inflammatory phase of wound healing.
Thus, it is unlikely that XO is a unique marker
found only in WF from chronic wounds; rather
it is likely that this enzyme is significantly ele-
vated in WF from chronic wounds compared
to AWF or matching patient serum. Future
studies measuring the activity of XO in AWF
will assist in establishing if this enzyme is a
useful biomarker of healing/non healing of all
wounds.

Inflammation is the body’s immediate
response to physical trauma, eventually lead-
ing to tissue repair and restoration. Elevated
levels of UA in the chronic wound environment
are likely to play an inhibitory role in healing
by promoting inflammation. This is exempli-
fied by a recent study using transgenic mice
that have increased turnover of UA (38). Kono
et al. showed that depletion of UA inhibits the
inflammatory response to cell death and that
XO-mediated generation of UA from dying
cells is a damage-associated molecular pattern
that leads to the recruitment of neutrophils and
amplified inflammation. Sustained production
of UA in underperfused damaged tissues may
also result in the precipitation of UA lead-
ing to the deposition of monosodium urate
crystals around the wound environment, as
is commonly observed in the case of gout
(39). Suspensions of monosodium urate crys-
tals are capable of producing an inflammatory
response in both gouty and non gouty patients
(40). Given that chronic wounds are charac-
terised by a prolonged inflammatory phase,
our results demonstrating elevated levels of
UA in WF indicate that UA is likely to play an
important role in perpetuating inflammation.
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The production of UA is also associated with
a burst of the highly reactive superoxide radical
and the subsequent generation of another
redox regulating oxidant, H2O2 (18,20). Exces-
sive release of these leukocyte-induced oxi-
dants can alter the structure of lipids, DNA
and proteins, thereby disrupting their normal
functions in wound healing (41). A wound
environment rich in oxidants may further
exacerbate the inflammatory response via the
activation of redox-sensitive transcription fac-
tors (42–45). In vitro redox regulation studies
indicate that activation of these transcription
factors upregulates different genes involved in
the inflammatory response, promoting the pro-
duction of various pro-inflammatory cytokines
and MMP expression (46,47). Excessive release
of reactive oxygen species (ROS) in the wound
environment has also been shown to cause
cellular damage, lipid peroxidation and pro-
tein modification (48,49). Redox imbalance in
the extracellular environment can lead to pro-
tein oxidation, increasing their susceptibility to
proteolysis, causing tissue damage and dys-
function (50). We propose that the presence of
elevated concentrations of XO at the wound
site is an overlooked source of ROS generation
in chronic wounds and may also contribute to
delayed wound healing.

In conclusion, the development of reliable,
non invasive point of care diagnostics based
on these findings may prove to be useful in
monitoring the prognosis and progress of heal-
ing of chronic venous leg ulcers. Indeed, the
observations that wound severity is related
to XO catalysis of purine precursors to UA,
provides not only a method of diagnosis, but
also a potential therapeutic target. With respect
to diagnostic applications, the severity of a
wound could be monitored by detecting the
levels of UA or the levels of one or more
of the UA precursors in WF. The detection
of elevated levels of UA would appear to be
associated with a more severe wound, while
elevated levels of precursor purines correlate
to a less severe wound. Monitoring changes of
purine metabolites in WF is therefore likely
to provide valuable information regarding
the healing patterns of chronic venous leg
ulcers. More importantly, our data indicating
enhanced turnover of purine precursors in clin-
ically worse ulcers show that XO is a novel
potential therapeutic target. Inhibition of XO
using specific inhibitors, such as allopurinol,

could simultaneously target the three major
contributors that keep chronic wounds in a non
healing state: oxidative stress, UA accumula-
tion and purine precursor depletion. Thus, the
outcomes of these studies are likely to benefit
wound management through the development
of a diagnostic test and the implementation of
new therapeutics for the treatment of patients
with chronic venous leg ulcers.
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